The restricted gravitational three-body problem trajectories associated with Lagrange fixed points

نویسنده

  • P H Borcherds
چکیده

Studies of the restricted three-body problem can help in understanding the dynamics of three-body interactions in the solar system. In the rotating coordinate system based on the two principal bodies there are five fixed Lagrange points. The equations of motion of the third body near a Lagrange point may be linearized, showing that under certain conditions there can be librational motion about the Lagrange points. Some examples of numerical studies of trajectories associated with Lagrange points are shown in inertial and in rotating coordinates, and are discussed. The examples include librations, horseshoe orbits and chaotic orbits. The restricted three-body problem, with its four degrees of freedom, provides considerable opportunities for project work in computational physics. Abstract (Serbian). Rad na analizi problema tri tela u ogranicenom slucaju moze pomoci boljem razumevanju dinamike tri tela u suncevom sistemu. U koordinatnom sistemu koji rotira, vezanim za dva primarna tela, postoje pet stacionarnih Lagrangevih tacaka. Jednacine kretanja treceg tela u blizini Lagranzeve tacke mogu biti linearizovane, I pod izvesnim uslovima pokazuju da moze postojati libraciono kretanje oko Lagranzevih tacaka. Prikazani su primeri numerickih resenja putanja oko Lagranzevih tacaka u inercijalnim I rotirajucim koordinatama. Primeri ukljucuju libracije, potkovicne orbite I haoticne orbite. Ograniceni problem tri tela, sa cetiri stepena slobode pruza znacajne mogucnosti za studentske projekte iz numericke fizike.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Binary Asteroid Observation Orbits from a Global Dynamical Perspective

We study spacecraft motion near a binary asteroid by means of theoretical and computational tools from geometric mechanics and dynamical systems. We model the system assuming that one of the asteroids is a rigid body (ellipsoid) and the other a sphere. In particular, we are interested in finding periodic and quasi-periodic orbits for the spacecraft near the asteroid pair that are suitable for o...

متن کامل

Euler-Lagrange equations and geometric mechanics on Lie groups with potential

Abstract. Let G be a Banach Lie group modeled on the Banach space, possibly infinite dimensional, E. In this paper first we introduce Euler-Lagrange equations on the Lie group G with potential and right invariant metric. Euler-Lagrange equations are natural extensions of the geodesic equations on manifolds and Lie groups. In the second part, we study the geometry of the mechanical system of a r...

متن کامل

Conservative Dynamical Systems Involving Strong Forces

We consider conservative dynamical systems associated with potentials V which have singularities at a set SV(x) —► °° as x —► S. It is shown that various "action" integrals satisfy Condition C of Palais and Smale provided that the potential satisfy a certain strong force (SF) condition. Hence, e.g., we establish the existence in SF systems of periodic trajectories which wind around S and have a...

متن کامل

A Gravitational Search Algorithm-Based Single-Center of Mass Flocking Control for Tracking Single and Multiple Dynamic Targets for Parabolic Trajectories in Mobile Sensor Networks

Developing optimal flocking control procedure is an essential problem in mobile sensor networks (MSNs). Furthermore, finding the parameters such that the sensors can reach to the target in an appropriate time is an important issue. This paper offers an optimization approach based on metaheuristic methods for flocking control in MSNs to follow a target. We develop a non-differentiable optimizati...

متن کامل

Using Invariant Manifolds of the Sun-Earth L2 Point for Asteroid Mining Operations

The three-body problem is a powerful tool for understanding non-Keplerian orbits. This project focuses on the Circularly Restricted Three-Body Problem (CRTBP), which can be applied to the Sun-Earth and Earth-Moon systems. In particular, we are interested in the Lagrange points of both systems and the Halo orbits that exist about them. These orbits are important for scientific missions, space st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1995